Tilings, Tiling Spaces and Topology

نویسنده

  • LORENZO SADUN
چکیده

To understand an aperiodic tiling (or a quasicrystal modeled on an aperiodic tiling), we construct a space of similar tilings, on which the group of translations acts naturally. This space is then an (abstract) dynamical system. Dynamical properties of the space (such as mixing, or the spectrum of the translation operator) are closely related to bulk properties of individual tilings (such as the diffraction pattern). The topology of the space of tilings, particularly the Cech cohomology, gives information on how original tiling may be deformed. Tiling spaces can be constructed as inverse limits of branched manifolds. 1991 Mathematics Subject Classification. 37B50, 52C23, 37A20, 37A25, 52C22.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hexagonal Inflation Tilings and Planar Monotiles

Aperiodic tilings with a small number of prototiles are of particular interest, both theoretically and for applications in crystallography. In this direction, many people have tried to construct aperiodic tilings that are built from a single prototile with nearest neighbour matching rules, which is then called a monotile. One strand of the search for a planar monotile has focussed on hexagonal ...

متن کامل

Tiling spaces, codimension one attractors and shape

We establish a close relationship between, on the one hand, expanding, codimension one attractors of diffeomorphisms on closed manifolds (examples of so-called strange attractors), and, on the other, spaces which arise in the study of aperiodic tilings. We show that every such orientable attractor is homeomorphic to a tiling space of either a substitution or a projection tiling, depending on it...

متن کامل

Ammann Tilings in Symplectic Geometry

In this article we study Ammann tilings from the perspective of symplectic geometry. Ammann tilings are nonperiodic tilings that are related to quasicrystals with icosahedral symmetry. We associate to each Ammann tiling two explicitly constructed highly singular symplectic spaces and we show that they are diffeomorphic but not symplectomorphic. These spaces inherit from the tiling its very inte...

متن کامل

Realization of Regular Maps of Large Genus

Regular map is an algebraic concept to describe most symmetric tilings of closed surfaces of arbitrary genus. All regular maps resp. symmetric tilings of surfaces up to genus 302 are algebraically known in the form of symmetry groups acting on their universal covering spaces. But still little is known about geometric realizations, i.e. finding most symmetric embeddings of closed surfaces and a ...

متن کامل

Lattices of tilings and stability

Many tiling spaces such as domino tilings of fixed figures have an underlying lattice structure. This lattice structure corresponds to the dynamics induced by flips. In this paper, we further investigate the properties of these lattices of tilings. In particular, we point out a stability property: the set of all the shortest sequences of flips joining to fixed tilings also have a lattice struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005